
www.manaraa.com

University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

Spring 2020

An Overlay Architecture for Pattern Matching An Overlay Architecture for Pattern Matching

Rasha Elham Karakchi

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Karakchi, R. E.(2020). An Overlay Architecture for Pattern Matching. (Doctoral dissertation). Retrieved
from https://scholarcommons.sc.edu/etd/5943

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please
contact dillarda@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F5943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F5943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5943?utm_source=scholarcommons.sc.edu%2Fetd%2F5943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu

www.manaraa.com

AN OVERLAY ARCHITECTURE FOR PATTERN MATCHING

by

Rasha Elham Karakchi

Bachelor of Science
University of Mosul, 2005

Master of Science
University of Mosul, 2008

Master of Science
University of South Carolina, 2016

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2020

Accepted by:

Jason D. Bakos, Academic Advisor

Duncan Buell, Committee Member

Manton Matthews, Committee Member

Herbert Ginn, Committee Member

Yan Tong, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

www.manaraa.com

c© Copyright by Rasha Elham Karakchi, 2020
All Rights Reserved.

ii

www.manaraa.com

Dedication

To my beloved sons, Raghid and Tamer

iii

www.manaraa.com

Acknowledgments

It is the dream of a young woman from a destroyed third-world country in the Mid-

dle East, suffered fear, faith persecution, and insecurity. Seven years in first-world

country where everything is new, starting from nowhere and stepping through many

challenges. With two little sons and husband, living the happiness, unhappiness,

success, disappointments, longing to re-unite with the parents, and the fear of the

unknown future. Proudly, I’m presenting my dissertation, the outcome of this jour-

ney, and it would not have been possible without the contribution of several people.

First, I would like to express my sincere gratitude to my advisor Dr. Jason Bakos,

for his exemplary support, patience and guidance throughout my doctoral studies.

I would like to extend my thanks to my dissertation committee: Dr. Duncan

Buell, Dr. Manton Matthews, Dr. Herbert Ginn and Dr. Yan Tong, for taking their

time to serve on my committee. I would like also to acknowledge the assistance of

Charles A. Daniels and Lothrop O. Richards, who helped in implementing some of

the design work.

Finally, the source of support, my family. I will forever be grateful to my parents,

Elham Karakchi and Saja Suleiman, for their unconditional love and endless encour-

agement. Thanks should also go to my dear sisters Rana and Maryam for their ever

love and care.

With no doubt, the most deserving of my gratitude is the love of my life and my

best friend, my husband Alaa Jameel, who has always been beside me and constantly

encouraged me in every step of this journey. His unlimited support has ever sourced

me the power to overcome all life obstacles.

iv

www.manaraa.com

Abstract

Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the

fundamental unit of work for many emerging big data applications, motivating re-

cent efforts to develop Domain-Specific Architectures (DSAs) to exploit fine-grain

parallelism available in automata workloads.

This dissertation presents NAPOLY (Non-Deterministic Automata Processor Over-

LaY), an overlay architecture and associated software that attempt to maximally

exploit on-chip memory parallelism for NFA evaluation. In order to avoid an up-

per bound in NFA size that commonly affects prior efforts, NAPOLY is optimized

for runtime reconfiguration, allowing for full reconfiguration in 10s of microseconds.

NAPOLY is also parameterizable, allowing for offline generation of repertoire of over-

lay configurations with various trade-offs between state capacity and transition ca-

pacity.

In this dissertation, we evaluate NAPOLY on automata applications packaged

in ANMLZoo benchmarks using our proposed state mapping heuristic and off-shelf

SAT solver. We compare NAPOLY’s performance against existing CPU and GPU

implementations. The results show NAPOLY performs best for larger benchmarks

with more active states and high report frequency. NAPOLY outperforms in 10 out

of 12 benchmark suite to the best of state-of-the-art CPU and GPU implementations.

To the best of our knowledge, this is the first example of a runtime-reprogrammable

FPGA-based automata processor overlay.

v

www.manaraa.com

Table of Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1

Chapter 2 Background . 5

2.1 Finite Automata . 5

2.2 Micron Automata Processor . 8

2.3 Automata on ALTERA-FPGA . 9

2.4 VASIM Relaxation . 12

2.5 ANMLZoo Benchmarks . 13

Chapter 3 Related Work . 15

vi

www.manaraa.com

3.1 Synthesis NFAs and Regular Expressions 15

3.2 Mapping Applications to AP Execution Model 16

3.3 Open Source Automata Processor Architectures, Simulations, and
Benchmarks . 17

3.4 Optimization Methods For NFA Descriptions 19

3.5 Comparative Studies of NFA Implementations on CPUs, GPUs,
and FPGAs . 20

Chapter 4 NAPOLY Design . 22

4.1 Overlay Architecture . 22

4.2 I/O Interface . 25

4.3 NAPOLY Performance Model . 28

Chapter 5 Mapping Problem . 31

5.1 Greedy Mapping Heuristic . 32

5.2 SAT solver mapping algorithm . 34

5.3 NFA Transformation . 38

Chapter 6 Experimental Analysis 41

6.1 Hardware Resources . 41

6.2 NAPOLY Run Time . 43

vii

www.manaraa.com

6.3 Mapping Results . 44

6.4 NFA Transformation Results . 46

6.5 Performance Comparison . 49

6.6 Overlay Scalability . 50

Chapter 7 Conclusion and Future work 52

7.1 Future Research Directions . 52

Bibliography . 56

Appendix A Mapping Heuristic . 60

A.1 validate_edges . 60

A.2 check_move . 60

A.3 Move_STE . 61

A.4 calculate_score . 65

viii

www.manaraa.com

List of Tables

Table 2.1 Transition Table for DFA Description 7

Table 2.2 Transition Table for NFA Description 7

Table 2.3 ANMLZoo Applications . 14

Table 6.1 Hardware Resources Used in Different Overlay Configurations . . . 41

Table 6.2 Total M20K Used for Output Buffer 42

Table 6.3 Repertoire of the achieved NAPOLY Configurations 43

Table 6.4 NAPOLY Mapping Using Mapping Heuristic 46

Table 6.5 NAPOLY Mapping Using SAT solver 47

Table 6.6 Snort Transformation Results . 48

Table 6.7 Protomata Transformation Results 48

Table 6.8 Power En Transformation Results 49

Table 6.9 Performance Results . 49

Table 6.10 Repertoire of Achieved Configurations on Stratix10 GS 50

Table 7.1 Wire Utilization Achieved For ANMLZoo Benchmarks 53

ix

www.manaraa.com

List of Figures

Figure 2.1 DFA for regular expression pattern “ababc”. 6

Figure 2.2 NFA for regular expression pattern “ababc”. 6

Figure 2.3 NFA-ANML for regular expression pattern “ababc”. 8

Figure 2.4 Micron-AP STE . 8

Figure 2.5 Matching “ababc” by mapping Figure 2.2 directly to Micron AP. 9

Figure 2.6 Hierarchical layout of processing elements in Micron half-chip . . 10

Figure 2.7 Island-Style FPGA Architecture 10

Figure 2.8 FPGA layers . 11

Figure 2.9 mapping Figure 2.2 directly to FPGA. 11

Figure 2.10 An Example of Fan-in based relaxation. 12

Figure 2.11 An example of Fan-out based relaxation. 13

Figure 3.1 An example of partitioning NFA based on colors. 19

Figure 4.1 State Element STE Design . 23

Figure 4.2 An example of NAPOLY interconnects. 24

Figure 4.3 NAPOLY Timing Diagram . 28

Figure 4.4 NAPOLY Output Region. 30

Figure 5.1 Mapping Problem. 32

Figure 5.2 An example for generating CNF clauses of literals based on
Constraint 1. 37

Figure 5.3 Transformation of NFA graph in Figure 5.1. 39

x

www.manaraa.com

Figure 5.4 Speeding up performance versus replications. 40

Figure 6.1 Execution time makeup of NAPOLY. 44

Figure 6.2 NAPOLY Performance vs. NFA size. 45

Figure 6.3 Speedup achieved in 75% of Benchmarks at SAT solver vs. heuristic. 47

Figure 7.1 Suggested NAPOLY design . 54

Figure A.1 Remapping STEs. Edge between state “fifth” and “second”
is reassigned from STEs n and m, where n > m, to m and
m+ 1 (after an operation “move STE n to m”). In this case, a
movement from a higher-numbered STE to a lower-numbered
STE causes all other STEs assignments between the two values
to shift up, requiring an update to all other edges involving
these STEs. 65

xi

www.manaraa.com

Chapter 1

Introduction

Datasets comprised of symbolic data, such as genomic sequences, item sets, graph

edges, web data, biological data, and data packets, are growing rapidly in size and

computational requirements. Computing such data often involves pattern matching

based computation, for example when discovering motifs [29], de novo assembling

[25], web-search and ranking [6] , question answering systems [24] [10], compression

in NoSQL systems [26] [20], approximate string matching [16], calculating the edit

distance between two genomic sequences [34], signature-based threat detection [8],

association rule mining [15], and data-packet inspection [8]. Such pattern matching

computations are algorithmically reducible to the simulation of either Determinitic

and Non-deterministic Finite Automata (DFA and NFA).

A DFA is inherently sequential because only one state is active at a time, and must

contain one state that corresponds to every possible partial match of every pattern

to be accepted. An NFA allows an arbitrary number of active states, which contains

more parallelism, however NFAs are data intensive. The state transition tables of

the NFA scales at O(n2) in the worst case, where n = #states whose access pattern

is data dependent. Access to the state transition tables has parallelism that scales

with the number of active states. Thus, evaluating automata on general-purpose

architectures becomes limited at large pattern set as a result of the massive inherently

unpredictable memory access pattern of transition table.

The inefficient performance of large-scale instance of DFA and NFA on general-

purpose architectures as a result of memory bound and unpredictable memory access

1

www.manaraa.com

is driving interest in Domain-Specific Architectures (DSA) to exploit this parallelism

without becoming bottleneck on the state transition tables. DSAs for automata pro-

cessing are generally based on Multiple-Instruction Single-Date (MISD) architecture

to perform multiple pattern matching operations on single input data in parallel.

Evaluating Finite Automata on hardware-based applications comprises of two

main steps: reconfiguration step and pattern matching step. The reconfiguration step

represents loading automata on target platform, loading input symbols into buffer,

and flushing reports into buffer. Loading automata can be executed by configuring

the RAM [5] or synthesizing automata directly on hardware fabric [23], [40], [3], [22].

The pattern matching step is when the input sequences are streamed on automata to

find a match.

Prior works have focused on optimizing the pattern matching time (processing

time) with neglecting reconfiguration time, which has significant impact especially

when pattern sets are large and multiple reconfiguration times are needed to program

the chip, or when many matches are reported at same time. Such automata-based

architectures are classified as FPGA-based architectures and ASIC-based architec-

tures.

Field-Programmable Gate Arrays (FPGA)-based approaches, where automata is

synthesized directly to an FPGA fabric, have long re-configuration time (10s of sec-

onds) [23], [40], [3], [22], but achieve very high pattern matching throughput (100s of

MB/s).

Application Specific Integerated Circuit (ASIC) architectures such as Micron Au-

tomata Processor (Micron AP), where the data to be searched is streamed into multi-

ple functional units, where each functional unit tracks partial pattern matches. Such

designs have faster re-configuration time than FPGA-based approaches, but lack the

ability to make tradeoffs between state density and transition density [5] [22].

2

www.manaraa.com

The main objective of this dissertation is to maintain the performance of automata

processing for arbitrarly large pattern sets by implementing an automata overlay

on FPGA, Non-Deterministic Automata Processor OverLay (NAPOLY), for pattern

matching that can be reconfigured rapidly at runtime and processed at high speed.

NAPOLY achieves as a compromise between purely FPGA- and ASIC-based ap-

proaches, allowing for rapid runetime reconfiguration while still having architectural

customization. NAPOLY is designed as Processor-in-Memory application, which ex-

ploits as much on-chip memory bandwidth allowed by the target automata while

supporting arbitrary large automata workloads. The work is comprised into three

main contributions:

1. A paramertizable overlay, NAPOLY, which is comprised of an array of hard-

ware modules (called State Transition Element or STE), each sensitive to a

specific pattern and reconfigured at run time in 21 to 74 µs depending on the

overlay size selected.

2. An open-source tool, NFATOOL, which is created principally to map logical

pattern states on STEs, the physical entities comprising overlay, using heuristic

allocation algorithm. NFATOOL is also developed for SAT solver-based map-

ping by generating the Conjunctive Normal Form (CNF) files and run off-shelf

SAT solver. NFATOOL is extended to transform automata files into different

forms such as graph description language, such as DOT files for graph visu-

alization and Transaction Control Language, such as DO files for simulation

purposes.

3. Tradeoff, Performance Comparisons and Scalability: (1) An analysis of the

tradeoff between state capacity, interconnect density, output buffer size, and

reconfiguration time, (2) performance comparison to state-of-the-arts Intel’s

3

www.manaraa.com

CPU-based NFA software (Hyperscan) and a well-known GPU-based imple-

mentation (iNFAnt) [17], and (3) performance and scalabilty on larger FPGAs.

This dissertation is organized as follows: in Chapter 2, we provide some back-

ground information on Finita Automata, Micron Automata Processor (Micron AP),

Field-Programmable Gate Array (FPGA), NFA transformation and a brief descrip-

tion about the benchmarks we used for testing and evaluating NAPOLY. In Chapter

3, we present history of related works, techniques and methodologies used to improve

automata processing. In addition to, several designs are implemented to exploit the

FPGA overlay benefits. Chapter 4 represents the hardware part of the dissertations,

where NAPOLY overlay design and its output, and input constraints are described, as

well as NAPOLY runtime behavior. NFATOOL is described in Chapter 5, where the

mapping heuristics algorithm, SAT solver and NFA Transformation are explained.

Chapter 6 presents the experimental analyses, trade-offs, and the results. Finally,

Chapter 7 concludes the research outcomes and the future works.

4

www.manaraa.com

Chapter 2

Background

This chapter presents some background information regarding Finite Automata and

its forms. We then provide an overview on Automata Processing on Domain-Specific

Architectures, namely FPGA and Micron AP . Also, we provide some context infor-

mation on FPGAs, and its architecture. Finally, we explain the NFA Transformation

and its approaches, in addition to presenting Automata-based applications Bench-

marks (ANMLZoo).

2.1 Finite Automata

Finite Automata (FA) is a set of states connected by labeled-edges, which are driven

by the input sequence, finite automata M as defined by [27].

Definition 1. M = (Q,∑, δ, q0, F), where

• Q is finite set of states,

• ∑ is a finite set of symbols called the input alphabet,

• δ :


Qx

∑→ Q, Transition Function for DFA,

Qx(∑∪λ)→ 2Q, Transition Function for NFA,

• q0 ∈ Q is the initial state,

• F ⊆ Q is a set of reporting states.

At each clock cycle, automata makes a transition based on (1) current state acti-

vation and (2) the match of input symbol and the edge label. When match is found

5

www.manaraa.com

0start 1 2 3 4 5a

λ

b

a

λ

a

λ

b

a

λ

c

a

λ

Figure 2.1 DFA for regular expression pattern “ababc”.

0start 1 2 3 4 5a b a b c

Figure 2.2 NFA for regular expression pattern “ababc”.

and automata is driven to a “report” state, automata accepts. In this case, both the

report ID and the current symbol position (offset) in the input sequence are reported.

FA is classified either as Deterministic (DFA) and Finite Automata (NFA), which

is commonly used to implement regular expression and to design sequential digital

logic. However, the two forms operate differently, which lead to different demands on

underlying hardware.

2.1.1 Deterministic Finite Automata (DFA)

During operation, DFA may have one active state at any time and accesses only one

entry of its state transition table and thus must contain a state for every possible

partial match of every possible pattern. This can lead to combinatorial growth of

the state space, size of state transition table, and consequently a tremendous storage

capacity required. Figure 2.1 shows an example of DFA consisting of 6 states (state

0 represents start-state and state 5 represents report-state) that recognizes a simple

regular expression pattern “ababc” .

6

www.manaraa.com

Table 2.1 Transition Table for DFA Description

Current State Input Symbol Next State
0 a 1
0 λ 0
1 b 2
1 a 1
1 λ 0
2 a 3
2 λ 0
3 b 4
3 a 1
3 λ 0
4 c 5
4 a 3
4 λ 0

Table 2.2 Transition Table for NFA Description

Current State Input Symbol Next State
0 a 1
1 b 2
2 a 3
3 b 4
4 c 5

2.1.2 Non-Deterministic Finite Automata (NFA)

NFA differs from DFA, where multiple states can simultaneously be active. Each

state needs to only track the progress towards accepting one specific pattern instead

of all possible patterns, which produces less number of states, smaller state transition

table, and minimal memory requirement as compared to an equivalent DFA. Figure

2.2 shows an NFA form that accepts the same pattern as in Figure 2.1. As it is shown

in Table 2.2, the current-state table for NFA is 2.6 times smaller than that of the

DFA in Table 2.1.

There is an alternative form of NFA description called ANML (Automata Network

Markup Language) developed by Micron [5]. ANML-NFA is differentiated by asso-

ciating the transition labels with the states instead of the edges. This form adds an

7

www.manaraa.com

0start (a)1 (b)2 (a)3 (b)4 (c)5

Figure 2.3 NFA-ANML for regular expression pattern “ababc”.

additional constraint that all of each state’s incoming transitions have the same label

set, allowing an implementation to associate the current-state table with the states

instead of the edges and thus reducing the memory requirement. Figure 2.3 shows

the alternative form of NFA with symbols associated with states, for implementing

the pattern “ababc”.

2.2 Micron Automata Processor

The AP’s architecture inherently requires an ANML-NFA form, where all transitions

into each state (from all immediate predecessor states) must activate on the same set

of input symbols. Using this form allows the state which is defined as STE to store

the symbols associated with the incoming transitions to each state as illustrated in

Figure 2.5, which illustrates how automata [ababc] is mapped onto Micron AP. AP

STE is shown in Figure 2.4.

Figure 2.4 Micron-AP STE

8

www.manaraa.com

The AP’s routing matrix is built using tri-state switches that can form arbitrary

connections between different pairs of STEs using a pool of shared physical wires.

The switches and wires are arranged hierarchically, where the interconnectivity be-

tween STEs is highest at lower levels of the hierarchy. Starting from the bottom of

the hierarchy, there are two STEs to a Group of Two (GoT), eight GoTs to a row

(16 STEs), sixteen rows to a block (256 STEs), 96 blocks to a half-chip (24K STEs),

and two half-chips to an AP (48K STEs), there are no shared routings (or inter-

connections) between half-chips. Micron AP adds counters and Boolean elements.

First-generation boards have 8 chips distributed on 4 ranks giving 1.5 M STEs total.

Figure 2.6 shows the hierarchical layout of processing elements in Micron half-chip.

Figure 2.5 Matching “ababc” by mapping Figure 2.2 directly to Micron AP.

2.3 Automata on ALTERA-FPGA

Field-Programmable Gate Array (FPGA) is a two-dimensional array of Logic Array

Blocks (LABs). Each LAB consists of ten basic reconfigurable Adaptive Logic Mod-

ules (ALMs) sharing local interconnections, control signals, and chain of connection

lines. The ALM consists of two 6-input Look-Up Table (LUTs), two-adders, four

multiplexers, and four registers to implement logic, arithmetic, and register func-

tions. Some LABs are called MLABs (Memory LAB), which contain LUTs-based

SRAM capability to support simple dual-port SRAM.

9

www.manaraa.com

Figure 2.6 Hierarchical layout of processing elements in Micron half-chip

LABs connect to each other through global interconnections distributed horizon-

tally and vertically on the device. Figure 2.7 shows the architecture of ALTERA

FPGA.

Figure 2.7 Island-Style FPGA Architecture

Conceptually, FPGA can be divided into two layers (as shown in Figure 2.8): The

logic (or fine-grain layer), which represents the pool of hardware resources, and

The overlay (or configuration layer), which consists of SRAM components and

defines how the construction of the hardware resources as real circuit.

10

www.manaraa.com

Figure 2.8 FPGA layers

Some prior work [23] [3] implemented automata (or NFA) as combinational circuits

and Flip-flops as illustrated in Figure 2.9, where automata [ababc] implemented on

FPGA using the traditional approach. This approach has fixed interconnection and

fixed symbol tables, which make it inapplicable for Time-Division Multiplexing.

Figure 2.9 mapping Figure 2.2 directly to FPGA.

Developing an abstraction of Automata Processor on FPGA overlay, against which

patterns may be synthesized to it is a substantially less costly operation than syn-

thesizing directly to the FPGA fabric.

11

www.manaraa.com

2.4 VASIM Relaxation

To allow mapping automata onto hardware platform sometimes requires transforming

automata into another functionally equivalent automata, but having different struc-

ture. One of the approaches of NFA transformation is VASIM Relaxation [38], which

includes two main approaches: Fan-in and Fan-out Relaxations.

Fan-in Relaxation is used to transform the NFA which arbitrarily has large

fan-in, and violates the hardware fan-in restrictions. A Fan-in constraint is the

maximum hardware fan-in defined by the architect to allow allocating automata onto

hardware platform. The state that violates the Fan-in constraint will be replicated.

For illustration, an example is shown below.

3

4

5

2

4

5

1

4

5

Original Automata Fan-in based
relaxed Automata

5

4

23 1

Fan-in
Viola�on!

Figure 2.10 An Example of Fan-in based relaxation.

Figure 2.10 shows an original automata of 5 vertices, where its maximum logical

fan-in I is 3, and logical fan-in d is limited to 1. Assuming d is 1, state 4 violates

the hardware fan-in constraint by its 3 incoming edges. When Fan-in relaxation, the

violated state is replicated by ceil(I/d). The outputs of the original vertex are copied,

while the inputs are divided among the new replicated vertices.

Fan-out Relaxation is the application of Fan-out constraint, the maximum

hardware fan-out, is defined by the architect to allocate automata onto overlay. Figure

2.11 shows an original automata of 5 vertices, where its maximum logical fan-out O

is 3. Assuming the logical fan-out d is limited to 1, state 2 violates the hardware

fan-out constraint by its 3 outgoing edges.

12

www.manaraa.com

1

2

4 35

1

2

5

1

2

4

1

2

3

Fan-out
Viola�on!

Original Automata Fan-out based
relaxed Automata

Figure 2.11 An example of Fan-out based relaxation.

During relaxation, the violated state is replicated by ceil(O/d). The outputs of

the original vertex are divided among the new replicated vertices, and the inputs are

copied.

2.5 ANMLZoo Benchmarks

ANMLZoo is a diverse benchmark suite of finite automata for evaluating automata

processing engines [11]. It consists of 12 benchmarks representing various applications

for automata processing. Table 2.3 shows ANMLZoo benchmarks which have up to

100 thousands states and up to 5000 distinct sub-graphs, which are connected to each

other to form ANMLZoo graph. While the first column lists the Benchmarks, the

second and third columns show the States in (1000’s) and Distinct Sub-graphs

respectively for each benchmark. The fourth column shows the Maximum Logical

Fan-in/ Logical Fan-out for each benchmark, which represents the maximum in-

coming and outgoing transitions of state. The Family column represents the family

that each benchmark belongs to. There are three families: Regex (set of characters

that define search pattern), Mesh (regular structure with fan-in/fan-out), and widget

family (when automata represented as a Tree). Last column Function describes the

function that each benchmark performs.

13

www.manaraa.com

Table 2.3 ANMLZoo Applications

Benchmark States
(K)

Distinct
Sub-graphs

Logical
Fan-in /
Fan-out

Family Function

Brill 26 1962 4/4 Regex
brill tag

patterns and
correct tags

ClamAv 48 515 11/2 Regex
viruses

signatures in
files

Snort 69 2585 19/5 Regex particular
snort rules

Protomata 42 2340 3/106 Regex
particular
motif

signature
Dotstar 96 2837 2/2 Regex spy rules

Power En 40 2857 4/3 Regex complex
rules

Levenshtein 27 24 8/5 Mesh

edit
distance
between
DNA

sequence

Hamming 11 93 4/2 Mesh

number of
mismatches
between
sequences

SPM 100 5025 3/2 Widget
groups of
related
items

Fermi 40 2399 2/2 Widget particular
path

Entity Resolution 95 1000 28/2 Widget

input
sequences
match
encoded
pattern

Random Forest 75 3767 2/2 Widget

Recognize
particular

handwritten
texts

14

www.manaraa.com

Chapter 3

Related Work

In this chapter, we summarize prior work in five related areas: (1) methods for

synthesizing automata-type architectures onto an FPGA fabric, (2) applications that

benefit from such architectures, (3) open source automata models and architectures,

(4) tools and methods for optimizing automata descriptions, (5) comparative studies

of NFA implementations on different platforms.

3.1 Synthesis NFAs and Regular Expressions

FPGA implementation of regular expression matchers are often inspired by network-

ing applications [41] and many of these are based on automata-based architectures.

For these approaches a significant challenge is the high cost of logic synthesis and

place-and-route for each set of regular expressions to be implemented.

Yang and Prasanna developed early methods for synthesizing regular expressions

into logic mapped onto two specific FPGA devices, a Xilinx Virtex XCV100 (20x30

array of configurable logic blocks) and a conceptual Self-Reconfigurable Gate Array

(SRGA) device [30]. Their original approach bypassed the synthesis flow and di-

rectly targeted the low-level FPGA fabric. However, as FPGA technology matured

this approach became infeasible, and their second design targeted HDL but intro-

duced additional optimization methods for both the NFA descriptions and generated

architecture [23] [40].

Becchi et al developed a set of techniques for optimizing both NFA and DFA-based

architectures [2] [21] [3], including several approaches to identify and explore design

15

www.manaraa.com

parameters that have the most significant impact on the performance and cost of the

corresponding NFA and DFA implementation. Examples of these include alphabet

size, number of inputs read per cycle (stride), and storage of next state tables in logic

and/or RAM.

Another approach for implementing DFAs and regular expressions is by using

Terenary Content-Addressable Memory TCAM, which is specialized type of high-

speed memory that searches its entire contents in a single clock cycle. Although it is

fast, it lacks of scalability [14].

Teubner et al. [32] implemented an FPGA-based automata engine for database

systems by integrating the FPGA hardware as xml projection (or pre-filtering) into

database system path. Xml projection technique [19] extracts filtering expressions

from query then pre-filtering the data to reduce dataset, and compilation overhead.

3.2 Mapping Applications to AP Execution Model

Automata-based architectures are most commonly associated with regular expression

evaluation, but the introduction of the Automata Processor has generated interest

in identifying other applications that map to NFA-type architectures, or so-called

“pattern recognition processors”. Examples include association rule mining [39], brill

tagging [42] [43], and Levenshtein and Hamming distance calculation [33]. More

specific examples include Protomata and Motomata [29], which search for motifs–

or common approximate DNA subsequences among a group of genomes–in which

each motif is identified by NFA-based pattern loaded onto the AP during runtime.

For these, the performance of the AP depends on its ability to quickly synthesize

and load patterns onto the AP. Another motif example, Wang et al. [18] proposed an

improvement of de novo motif search Weeder performance up to 751x comparing with

CPU. There are also efforts to develop general-purpose programming languages for

NFA-type architectures, such as RAPID, a proposed high-level programming language

16

www.manaraa.com

for pattern recognition processors [36] . Moreover, Automata Processor is proposed

in [9] as an engine to execute integer and floating-point comparison.

3.3 Open Source Automata Processor Architectures, Simulations,

and Benchmarks

Wadden et al. developed a place and route tool built on VPR [4] that targets a

conceptual design for a theoretical Automata Processor fabric [36]. This tool serves

as an experimental framework with which to explore the impact of routing algorithms

and interconnect design on performance and efficiency. Using this tool, they compared

the hierarchical design of the AP routing matrix to a non-hierarchical mesh-based

network-on-chip and concluded that the ideal interconnect architecture depends on

the input NFA topology.

The same group compiled a suite of NFA benchmarks called ANMLZoo containing

a representative example of an NFA description, sample input, and expected outputs

for every publicly-released application for the AP as well as two synthetic bench-

marks [11]. They also developed open source tool that can simulate the evaluation

of arbitrary ANML descriptions and perform basic transformations to NFA such as

elimination of counters and Boolean elements and use of state replication to limit the

maximum in-degree (fan in) and out-degree (fan out) of the NFA [22]

Fang et al. designed the Unified Automata Processor (UAP), a set of vector

extensions added to a traditional von Neuman CPU optimized for implementing a

variety of NFA-based programming models [22]. The UAP exploits parallelism by

concurrently traversing one edge per cycle for each of its 64 lanes. The design stores

NFA transitions in local memory attached to each lane, equally 1 MB in total. The

transitions are stored in a compact, efficient format but the design is limited to NFAs

that can fit into the local memory.

17

www.manaraa.com

As a way to exploit the SRAM speed and energy efficiency comparing with DRAM,

Das et al. [31] proposed Adopted Micron-AP design, which uses the higher level of

cache as a substrate for automata processing instead of DRAM in Micron AP. In

the design, conventional cache is extended by two fully pipelined stages to process

the input symbol. The first stage represents finding the symbol match in the RAM

and the second is implementing the state transitions through hierarchical switching

network. Total cache space utilized is 1MB and 12x speed up over AP. However,

the growing interconnection complexity with the number of states have limited cache

automaton speed and throughput. J et al. [12] uses Time-Division Multiplexing

approach by adding multiplexer to pipeline the hierarchical switching network. This

approach improved cache automata throughput by 2X.

Wadden and al. [35] proposed a modified Micron AP Reporting Architecture to

reduce AP overhead and stall cycles when dense reporting actions occurs at same

time. The modified AP reporting region consists of 64 16-bit sub-RA (Reporting

Aggregation) equivalent to one 1024-bit RA in Micron AP, all gathered in arbitration

unit. Along with reporting aggregation, there is shared 64-bit Mega tag component to

report the symbol offset. This architecture improves the reporting sparsity of some

ANMLZoo benchmarks and keeps same performance for other benchmarks which

have dense of reporting.

Chuncken Bo et al. [7] proposed an automata processing framework implemented

using Amazon EC2 F1 Instance. The I/O circuitry of the framework is implemented

based on AXI-PCIe combination. The research work shows that FPGA and Micron

AP outperform the Von-Neumann architecture due to their massive parallel architec-

ture, however reporting activity majorly impacted the performance to achieve higher

clock speed.

18

www.manaraa.com

3.4 Optimization Methods For NFA Descriptions

Recent work has contributed new methods for transforming NFA descriptions into

alternative but functionally-equivalent forms.To the best of our knowledge, only two

research groups has focused on optimizing and transforming automata.

The First approach of NFA transformation is NFA partitioning algorithm, which

is proposed by Becchi’s group at NC State University [28]. The objective of this

algorithm is to split the NFA into a small number of balanced partitions by assigning

a unique color to every partition. While state replications increases during splitting

and coloring partitions, the number of state replication decreases when consolidating

some partitions. The partition size is limited by the hardware platform (Nmax),

where the number of states in each partition must not exceed Nmax. Figure 3.1

shows NFA partitioning in an example, where the original Automata is partitioned

into four separated partitions, represented in the Figure by four unique colors. The

green partition comprises of states (0,1,2,3), and pink partition comprises of states

(0,4,5,6), blue partition comprises of states (0,4,7) and orange partition comprises of

(0,8,9) states.

Figure 3.1 An example of partitioning NFA based on colors.

Although, NFA partitioning has significantly contributed in improving the perfor-

mance in three types of dataset, namely Small NIDs, Bioinformatics, and Synthetic,

19

www.manaraa.com

the algorithm has not been tested on other types of automata applications such as

Brill Tagging, Protomata and Random Forest, beside the algorithm has several re-

strictions. First, the algorithm manages the NFA as a tree, where only one node is

the root node (or entry state). Second, any cycle is addressed as one super state that

cannot be split into multiple partitions.

The second approach of NFA transformation is Fan-in Relaxation, which is pro-

posed by Center of Automata Processing (CAP) at University of Virginia [36]. This

approach differs than the above by managing the NFA as a graph, where more than

one vertex can be entry (start) vertex and number of connected components can be

found. This approach is used to transform the NFA which arbitrarily has large fan-in,

and violates the hardware fan-in restrictions.

3.5 Comparative Studies of NFA Implementations on CPUs, GPUs,

and FPGAs

Once configured with an NFA description, the Micron Automata Processor, the Uni-

fied Automata Processor, and all FPGA-based automata processors generally achieve

high traversal throughput of one or two input symbols per clock cycle. Processing

NFAs that are too large to fit on a device requires multiple passes of the input stream.

Preprocessing time, which potentially includes synthesis and place-and-route, is often

an important performance consideration. CPU- and GPU-based approaches can pro-

cess NFAs stored in DRAM and are generally less affected by preprocessing time, but

their traversal time–especially for larger NFAs–is limited by their cache performance.

Since the behavior of automata processors is dependent on both the NFA structure

and input stream, performance comparisons between competing architectures is dif-

ficult.

NFA descriptions such as ANML, NFA, or regular expressions are implemented

for special-purpose automata representation. Such ANML description for Micron

20

www.manaraa.com

AP, NFA for CPU and FPGA, and INFANT for GPU [17]. To simplify the compar-

isons between the three different platforms, [13] proposed MNCart as comprehensive

central ecosystem gathering automata tools. MNCart system is represented by JSON-

BASED open-source network language MNRL for representing the state machines.

21

www.manaraa.com

Chapter 4

NAPOLY Design

In this chapter, we provide an overview of the architecture of our reusable Non-

determinstic Automata Processor OverLaY (NAPOLY), its State Transition Ele-

ments, programmable interconnects, and its resource constraints. Then, we provide

an overview about the I/O interface including the design of NAPOLY report region.

Finally, we discuss NAPOLY performance model.

4.1 Overlay Architecture

NAPOLY architecture is reusable (without FPGA reconfigurations) across different

NFA descriptions having arbitrary state labels and arbitrary logical NFA typologies,

provided that the logical topology does not violate resource constraints inherent in the

overlay structure. The most important constraint is a parameter of the interconnect

that we refer to as “hardware fan-out”, which determines the maximum number of

outgoing transitions per STE as well as the maximum distance between a pair of

connected STEs with respect to their location in the array. For example, with a

hardware fan-out of 10, STEn can only connect to STEn−4 to STEn+5 (including

itself). We developed several Pareto optimal versions of the overlay with varying

numbers of STEs and hardware fan-out.

22

www.manaraa.com

4.1.1 STE Design

Without considering the resource usage of the interconnect, the number of STEs is

limited by the on-chip RAM available to store the input symbols associated with each

STE.

Figure 4.1 shows the design of our STE. In order to achieve maximum utilization

of the MLAB memory, the current state tables are generated as 256-deep x M bit

RAMs, where M = the number of STEs. Each STE accepts a one-bit input from its

corresponding column in the current state table, indexed by the input symbol.

Figure 4.1 State Element STE Design

Each STE contains an OR-gate accepting activation signals from its connected

predecessor STEs. Any cycle in which any of the incoming activation signals are

asserted while receiving a one-bit from the current state table will activate the STE’s

state bit in the following cycle. Unless the start bit is set, the state bit resets in any

cycle in which this condition does not hold. While the state bit is set, the STE will

23

www.manaraa.com

broadcast an activation signal to all its outputs, which are each AND-gated against

a corresponding interconnect configuration bit before being sent out to its successor

STEs. The interconnect configuration bits and the start and reporting flags are stored

in a set of flip-flops connected in a shift register both internally and across all the

STEs in the array. As such, the number of available ALMs defines an upper bound

on the level of interconnectivity.

Figure 4.2 An example of NAPOLY interconnects.

4.1.2 Interconnection Design

The physical STEs on the FPGA are connected using point-to-point links, where each

STE sends an output signal to itself and f−1 of its neighbors, where f = the hardware

fan-out. The STEs adopt a one-dimensional addressing scheme, where each STE has

an ID number assigned contiguously and sends output signals to STEs n−b (f−1)
2 c to

n+bf
2c, where n=the STE ID. Figure 4.2 shows NAPOLY interconnects when n = 4,

and f = 4. The blue and red wires represent the backward and forward interconnects

respectively.

This interconnect design is different than some previous ASIC designs, which

use the hierarchical switched interconnect that gives each State Transition Element

the ability to send signals to a larger pool of potential successor STEs. However,

a switched interconnect complicates NFA preprocessing, as the synthesis tools must

place and route the states onto the fabric while managing shared interconnect re-

sources. On the other hand, our design requires only consideration of state-to-STE

24

www.manaraa.com

mapping, since there are dedicated, non-shared wires between each pair of connectable

STEs.

4.1.3 Overlay Resource constraints

STE capacity is bounded by RAM capacity. Our evaluation FPGA is an Intel Stratix

5 GX A7. This device has roughly 7X the on-chip memory capacity in M20K resources

than it does in its MLAB (LUT-based) resources, but there are several practical

problems with using M20K resources for the current-state tables. First, the M20K

blocks are available in only 20 out of the 209 columns on the FPGA while the MLAB

blocks are more uniformly distributed. Using MLABs avoids congestion around the

M20K columns. Second, the current state tables have a depth of 256, while the

minimum depth required to fully utilize M20K resources is 512, meaning that only

0.5 of the M20K capacity is available for depth-256 tables. Third, the M20K requires

synchronous reads, which if used for the current state table would potentially reduce

the throughput by 1/2, as each input symbol would require one cycle to access the

current state table and another for updating the state flip-flop. Finally, the M20K

blocks are needed for other purposes, such as to buffer the input and output data for

the AP fabric. The Stratix 5 GX 7A contains 7.16 Mb of MLAB memory, giving an

upper bound of roughly 29K STEs, as compared to 48K STEs on the Micron AP.

4.2 I/O Interface

The input symbols coming from the DRAM through the interface buses are stored

into input buffer. The outputs reported in NAPOLY are stored into number of output

buffers before flushing out to the DRAM.

25

www.manaraa.com

4.2.1 Input Buffer

A 64K x 8-bit M20K-based RAM serveing as the input buffer. Once filled, it streams

input data into the STE array at one symbol per cycle (152 MB/s for the 4K-STE

overlay). Filling the input buffer from DRAM requires 8.6µs (7.1 GB/s), performed

S/64K times, where S is the total number of input characters.

4.2.2 Output Buffer and Report Region

Any STE may be mapped to a particular reporting state, which causes it to generate a

global output signal or “report” in all cycles in which it is active. Ideally the output

buffer would accommodate a scenario where all states are configured as accepting

states and all states are active in every cycle (this is easily achievable by setting the

“start” and “reporting” flag on all STEs).

In order to obtain the reporting ID, NAPOLY is implemented to have multiple

output regions, where each region represents a group of consecutive STEs (M). The

number of reporting regions in the design is equal to (N
M
), where N is total number

of STEs. To determine which STE is reporting in each group, we used a priority

encoder. The number of encoders determines the maximum number of reports per

clock cycle without stalling.

4.2.3 output buffer implementation

Unlike the input buffer which is 64KB x 8-bit, the output buffer is designed to have

various depth and width depending on the overlay size and total number of priority

encoders in each report region. The buffer depth depends on overlay size, smaller

overlays have higher output buffer depth. The output buffer depth for overlay 4K,

8K, 12K, 16K, 20K and 24K respectively is 64K, 32K, 24K, 16K, 12K and 8K. To

illustrate, let us assume the output region represents 1K STEs, and number of en-

coders per region is 4, and overlay size 8K STEs, this gives total number of regions is

26

www.manaraa.com

8 (= 8K
1K

), and total number of encoders is 32 (= 4× 8). The output buffer comprises

of output the buffer width of the 8K STEs and 32 encoders in total is equal to 320.

This is considered the width of input port (port A) of the RAM. The output port

(port B) is designed to allow the output buffer to access the DDR3 and transfer data

using DMA. Therefore, its width is fixed to 512-bit, which equals to DMA signal

width.

However, the dual RAM design is restricted by the set of ratios between port A

and port B width are 1, 2, 4, 8, 16, 32. This prevents generating RAM with ratio
W idthB
W idthA

, leading us to necessitate padding the input port width by extra 0s to the left

in order to achieve the minimum valid ratio between the two ports. These padded

bits are used to store the input offset in as shown in Figure 4.4.

4.2.4 Priority Encoder Operation

The priority encoders in each group works simultaneously to identify the active report

STEs per time. The process starts by the right-most bit in the group, checking if the

bit is set. If so, the bit will be encoded and its ID sent to the reporting-ID register. If

the bit is zero, the priority encoder moves to the very next bit and repeat the process,

until the final bit in the group.

Figure 4.4 shows the design of priority encoder in our report region. In the Figure,

we assume total number of STEs (overlay size) is 16. The size of the output region

is 8, so the number of groups is 2 (= 16
8). We instance that the number of priority

encoders in each group is 4. During the reporting time, in addition to store the ID

of the reporting STE, the offset of the input symbol is also being stored in order to

identify the match location in the input sequence. Both the STE IDs and offsets are

stored into a M20K-based dual RAM serves as the output buffer.

27

www.manaraa.com

4.3 NAPOLY Performance Model

Historically, automata implementations have evaluated performance in terms of sym-

bol throughput, such as symbol per cycle or symbol per second. However, this as-

sumes that the entire input automata will fit on a single chip. Practical workloads

inevitably require multiple passes, and reconfiguration time plays a substantial part

of end-to-end performance. Estimating performance is mostly not only, a matter of

estimating the number of reconfigurations, but also estimating the time to read input

set and flush the reports.

Figure 4.3 NAPOLY Timing Diagram

At runtime, NAPOLY follows the timing diagram shown in Figure 4.3. For

each block of input characters the array must fill the input buffer from DRAM

(sizeinput_buffer

bwDRAM
), and for each batch of STEs it must reconfigure its array (timereconfig)

(loading next_state tables and configuring gates), flush the input buffer through the

array (timeIBF), and flush the output to DRAM (timeOBF). Time to configure gates

depends on f and STEs, while time to load the next state tables depends on STEs

multiplied by 256. Therefore, Time to load the next state table grows by the in-

crease in overlay capacity, while time to load gates decays over the overlay capacity

as the f decreases. For a given NFA and input, the effective throughput is calculated

according to Equation 4.1.

The reconfiguration time timereconfig gives the time needed to reconfigure a new

NFA onto the overlay. Thus the execution time scales with R × timereconfig × IS
64K

,

28

www.manaraa.com

where 64 KB = the size of the input buffer and IS is the size of the input data to be

searched for patterns.

Throughput = sizeinput_buffer
sizeinput_buffer

bwDRAM
+R×(timereconfig+timeOBF +timeIBF)

(4.1)

29

www.manaraa.com

Figure 4.4 NAPOLY Output Region.

30

www.manaraa.com

Chapter 5

Mapping Problem

Mapping an NFA graph to an overlay (NAPOLY) is performed by allocating every

state into STE and mapping every edge to physical interconnect without violating

the hardware fan-out constraints.

Definition 2. For a given NFA {V,E}, where V is a set of states and E a set of

edges (transitions), a map is an association between each of the NFA states of an

NFA graph and a corresponding STE index in the range of [0, N − 1], where N =

number of STEs. There are thus |V |! unique maps for a given NFA assuming |V | = N .

For example, assume we have NFA graph consisting of 7 states [A, B, C, D, E, F,

G] as shown in Figure 5.1, and we wanted to map this NFA onto an overlay consisting

of 7 STEs [0, 1, 2, 3, 4, 5, 6]. Assume the hardware fan-out f is 9, forward connections

are 4, backward connections are 4, and self loop is one connection.

If we map each state to a STE in order, as it is shown in Figure 5.1, the edge

between B and G will require a connection to mapping state B onto STE1, and

mapping state G to STE6. This will violate the fan-out constraint which is maximum

“reach” of 4.

One way to pass the mapping is to map state F to STE6, and G to STE5, as

shown in the Figure. There is N! possible ways to map NFA graph, however not all

the ways can achieve the mapping successfully. The number of successful mapping

solutions increases by growing the hardware fan-outs.

31

www.manaraa.com

In this particular example, there is 7! or 5040 possible ways to map such small

NFA. With a hardware fan-out of 5, there is no mapping solution. By increasing

hardware fan0out, the number of possible solutions multiplies. As instance, with a

hardware fan-out of 6, 7, and 8, the number of mapping solutions significantly grows

to 24, 48, and 372 respectively.

Figure 5.1 Mapping Problem.

For the purpose of achieving effective mapping solutions, two approaches are pre-

sented in this chapter: Heuristic and SAT solver. In this chapter, we also presents

the NFA transformation and its impacts on overall performance.

5.1 Greedy Mapping Heuristic

To arbitrary map NFAs into a target overlay having given a hardware fan-out, We

have developed a greedy mapping heuristic.

The hardware fan-out determines the number of wire tracks to and from each

STE, as well as the maximum reach of each STE in terms to maximum distance over

32

www.manaraa.com

which a connection can be made between two STEs: i− j ≤ bf−1
2 c and j − i ≤ b

f
2c

for hardware fan-out f , for any edge in the NFA description s → d where state s is

mapped to STE i and state d is mapped to STE j.

The hardware fan-out parameter is a constraint that defines which subset of maps

are valid for a given NFA. In order to find a valid map, a mapping algorithm must

solve the following problem.

Given a set of NFA edges {e : ∀(p, s) ∈ E} , find:

map(p),map(s) :

(map(p),map(s) are unique) and

(map(p)−map(s) ≤ b(f − 1)/2c) and

(map(s)−map(p) ≤ bf/2c)


Definition 3. For a given NFA graph {V,E} and a given map, amapping violation

is any edge (p, s) ∈ E where (map(p)−map(s) > b(f−1)/2c) or (map(s)−map(p) >

bf/2c). In other words, a mapping violation occurs for each NFA edge whose prede-

cessor and successor states are mapped to STEs whose indices are too far apart given

the hardware fan-out of the target NAPOLY interconnect.

For a given map, our heuristic greedily finds and resolves each mapping violation.

Our heuristic resolves each violation in order of ascending predecessor STE index by

reallocating the offsets, meanign all the mappings between the new location and the

original locations, which has unpredictable offsets on the score.

The score function is computed as shown in Equation 5.1.

∑
(p,s)∈E

|map(p)−map(s)| (5.1)

The score function is the accumulated mapped distance of the mappings of each

predecessor-successor pair, where the distance is defined as the difference in STE

index. The score is not directly affected by mapping violations, meaning that mapping

33

www.manaraa.com

A could have a lower score than mapping B when mapping A has more violations

than mapping B.

We found that this approach gives the mapper flexibility to make decisions that

potentially increase the number of mapping violations in order to achieve longer-term

optimization. A consequence is that violations are likely to still exist after each pass

through the STEs, in which case the heuristic will make additional passes as needed

to resolve all violations. The mapping heuristic is explained in details in Appendix

A.

5.2 SAT solver mapping algorithm

Mapping states to STEs against the hardware interconnect constraints is an NP-

complete, reducible to SAT problem. The hardware fan-out parameter defines which

subset of maps are valid for a given NFA. In order to find a valid map, a mapping

algorithm must assign map(s)∀s ∈ V subject to the following constraints:

1. Maximum hardware fan-out,

∀(s, d) ∈ E: ((map(s) - map(d))≤ b(f−1
2)c) and ((map(d) - map(s))< b(f

2)c)

2. Every state must be assigned to only one STE

∀s ∈ V , ∀i, j ∈ N , i 6= j, if map(s) = i, then map(s) 6= j

3. Every STE must be allocated one state

∀s, d ∈ V , s 6= d, ∀i ∈ N , if i = map(s), then i 6= map(d)

4. All states must be allocated

∀s ∈ V , map(s) ∈ N

In order to allocate the states into STEs, we describe the constraints above in

conjunctive normal form (CNF), which is a conjunction of clauses, where each clause

is formed as a disjunction of literals.

34

www.manaraa.com

We assign each possible mapping of a state to an STE as a Boolean variable whose

state determines if the mapping is made, i.e. Let Ls
i = TRUE when map(s) = i.

We describe constraint 1 as shown in Equation 5.2 by constructing a set of clauses

that collectively guard against every possible mapping violation defined in 3:

∧
∀(s,d)∈E,∀i∈N

(Ls
i ∧

∨
∀m∈[−b f−1

2 c...,−1,1,b f
2 c]

Ld
i+m) (5.2)

In other words, if any edge (s, d) is mapped such that map(s) == i and state d is

not mapped to SEs i− bf−1
2 c to i+ bf

2c, then the clause will be FALSE, invalidating

the entire CNF expression.

We describe constraint 2 by adding an additional clause for each state, comprised

of the conjunction of the literals representing every possible mapping of that state,

as shown in Equation 5.3.

∧
∀s∈V

∨
foralli∈N

Ls
i (5.3)

We describe constraint 3 by adding |V |2 × |N | additional clauses, formed from

the conjunction of the complimented variables corresponding to every pair of states

mapped to every STE, as shown in Equation 5.4.

∧
∀s1∈V

∧
∀s2∈V

∧
∀i∈N

(Ls1
i ∨ Ls2

i) (5.4)

We describe constraint 4 similar to the previous constraint, but for each conjunc-

tion as the complimented variables corresponding to each state mapped to every pair

of STEs, as shown in Equation 5.5.

∧
∀i1∈N

∧
∀i2∈N

∧
∀s∈V

(Ls
i1 ∨ Ls

i2) (5.5)

35

www.manaraa.com

Figure 5.2 depicts an example NFA, overlay, and corresponding CNF clauses that

describe constraint 1. Graph G is composed of V ∈ 0, 1, 2, 3, E ∈ (0, 1), (0, 2), (1, 3),

(2, 3), and overlay M is composed of N ∈ (0, 1, 2, 3) and f = 3.

Each potential mapping clause is shown as a matrix in Figure 5.2 where its rows

represent the state end the column represent the STEs to which the state can poten-

tially by mapped. The cells in the matrix are the literals of the clauses, shown as T

for the positive literal and F as the negative literal. The clause joins literals by OR,

while clauses are joined by AND.

The example presents two cases: (1) mapping state0 to all possible STEs and

mapping its successors into STEs based on state0 allocation and the physical distance

or the hardware fan-out. If assigning state0 to any STE is false, its successor state

1 must be true into either STE1 or STE2. Same for case (2) when mapping state2

and its successors into all possible STEs.

36

www.manaraa.com

Figure 5.2 An example for generating CNF clauses of literals based on Constraint 1.

37

www.manaraa.com

5.3 NFA Transformation

When synthesizing a NAPOLY overlay configuration, there is a tradeoff between the

number of STEs and the hardware fan-out. As shown in Figure 6.2, larger overlays

achieve higher throughput because they require less runtime reconfigurations. For a

given benchmark automata, the maximum overlay size available to it is limited by the

minimum hardware fanout on which it can be mapped. As such, our goal is to map

every NFA onto an overlay having minimal hardware fan-out, since this will allow for

the use of a larger overlay. The minimum hardware fanout depends on the density of

the automata, which can characterized by its logical fan-in and fan-out (the maximum

number of incoming and outgoing transitions, respectively). In general, these values

have an affect on the minimum hardware fanout for which our mapper can map the

automata.

Our methodology for finding the minimal hardware fan-out for a given NFA is

to perform a trial-and-error binary search. For some benchmarks, it is possible to

reduce the hardware fan-out by transforming the NFA into a functionally equivalent

alternative form that limits the maximum number of incoming and/or outgoing tran-

sitions from each state. In some cases, this allows for the use of an overlay with more

STEs and less hardware fan-out than would otherwise be required at the cost of an

increased number of states.

Specifically, we use the fan-in/fan-out relaxation technique included in VASim [37]

to decompose any subgraph that has any states that have an in- or out-degree larger

than the prescribed fan-in or fan-out limit into two or more smaller graphs. This type

of transformation replicates all the states along all the paths from the start states

to the accepting states that are part of any of the high fan-in or fan-out paths, as

shown in the example in Figure 5.3. As such, this approach is only practical when the

performance gained from increasing the overlay size outweighs the performance loss

caused by increasing the number of states and resulting number of reconfigurations.

38

www.manaraa.com

Figure 5.3 Transformation of NFA graph in Figure 5.1.

We applied this technique to each NFA benchmark in which less than 5% of its

NFA sub-graphs failed to map with the hardware fan-out needed to migrate the

benchmark to the next larger overlay. Figure 5.4 shows the potential speed up versus

number of state replications needed to enable upgrading the overlay in 3 of the bench-

marks. Figure 5.4 shows Promomata, Snort and PowerEn performance when toler-

ating number of states to improve the performance. Increasing the number of states

by 0.02 speeds Protomata performance up by 1.51, as shown in (a). As shown in (b),

the actual number of state replications 0.04 is needed to obtain the best performance

of Snort at 16K overlay. Power En throughput, in Figure (c), can be improved by

replicating the states by 0.008 and upgrading the overlay to 20K. As shown Power En

performance speeds up only within very small region (number of replications ≤ 0.003)

of 20K overlay performance plot.

39

www.manaraa.com

(a) Protomata

(b) Snort

(c) Power En

Figure 5.4 Speeding up performance versus replications.

40

www.manaraa.com

Chapter 6

Experimental Analysis

In this chapter, our experimental analyses and results are presented in five main sec-

tions: Hardware Resources, Mapping automata into the overlay, the improvement

achieved in performance after transforming the NFA, comparing NAPOLY perfor-

mance with state-of-the-art GPU and CPU, and performance with scalability.

6.1 Hardware Resources

Table 6.1 shows the hardware resources consumed to implement 6 different overlay

configurations. The column labeled #STEs gives overlay sizes (number of STEs)

and the column labeled Maximum hardware fan-out gives f the max reach of

every STE. As shown in the Table, there is a tradeoff between the STEs and the

achieved fan-out. Also, larger overlays achieves lower maximum frequency (Fmax) in

MHz, as shown in the column labeld Fmax.

Table 6.1 Hardware Resources Used in Different Overlay Configurations

STEs Max Hw. Fan-out
(f)

Fmax
(MHz) MLABs ALMs% Reg.% M20K%

4K 103 152 1,047,296 90 46 41
8K 44 136 2,096,384 91 41 41
12K 25 122 3,145,472 95 36 60
16K 12 121 4,193,024 94 26 41
20K 6 119 5,242,112 95 19 61
24K 3 112 6,291,200 96 15 41

41

www.manaraa.com

Table 6.2 Total M20K Used for Output Buffer

STEs Buffer Depth Buffer Width Buffer Width
After Padding

Total M20K
(MB)

4K 64 192 256 16
8K 32 416 512 16
12K 24 624 1024 24
16K 16 896 1024 16
20K 12 1144 2048 24
24K 8 1399 2048 16

The column labeled MLABs gives the total number of MLABs used in every

overlay. This number increases at larger overlays since the MLAB is a simple dual-

port SRAM used to implement the next-state table in each STE. The number of

MLABs is theoretically equivalent to #MLABs = #STEs × 256, and each next-

state table is 256× 1 RAM. As shown in the table, ALMs usage is almost the same

in all the overlays, while percentage of Regs, which limits the maximum hardware

fan-out, lowers with larger overlays. Finally, the column labeled as M20K shows the

percentage of M20K, which is used in implementing the input and output buffers.

The input buffer is 64K × 8− bit in all the overlays. The output buffer size depends

on the overlay.

Table 6.2 shows the total M20K used to implement the output buffer in the over-

lays. The column labeledBuffer depth ranges between [64K, 32K, 24K, 16K, 12K, 8K]

based on overlay size (#STEs). The Column Buffer Width shows the width of

the output buffer, which is determined by #encoders×#outputregions× log2(STEs).

As described in Chapter 5, the buffer width needs to be padded, as shown in column

Buffer Width after Padding. Column Total M20K shows the total number of

M20K needed in each overlay.

42

www.manaraa.com

Table 6.3 Repertoire of the achieved NAPOLY Configurations

STEs Max BW
(GB/s)

Time
Reconfig

T
(µs)

Outp
Encod.

Max
Report
Cycles

Max
Report
Rate
(GHz)

Throughp
24K
states
(MB/s)

Throughp
128K
states
(MB/s)

4K 1866 21 16 100% 2.4 14 3
8K 1427 31 32 50% 2.2 27 5
12K 1031 43 48 33% 2.0 32 6
16K 692 53 64 25% 1.9 36 9
20K 426 67 80 20% 1.9 31 9
24K 240 74 96 17% 1.8 67 11

6.2 NAPOLY Run Time

Tables 6.3 shows the Pareto optimal set of synthesized and place-and-routed overlay

configurations with respect to STE capacity and hardware fanout. The first column of

the table #STEs lists all the 6 NAPOLY configurations. The column labeled Max

BW for N%active = 0.25(GB/s) gives the upper bound for on-chip memory band-

width needed for 25% active states. Exploitation of on-chip memory bandwidth is the

principle performance advantage of NAPOLY over CPU- and GPU-based approaches.

The column labeled Time_Reconfig (T) lists the time needed to reconfigure a new

NFA onto the overlay. The column labeled Output Encoders gives the number of

output encoders, which determines the maximum number of “reports”, or accepting

state activations, allowed per clock cycle.

Likewise, the column labeled Max Reporting Cycles gives the depth of the

output buffer relative to the depth of the input buffer (64K). Together, these values

and Fmax determine the maximum reporting rate of the overlay configuration, listed

in the column labeled Max Report Rate (GHz). For a given NFA and input,

the effective throughput is calculated according to Equation 4.1, which is shown in

the last two columns (Throughput for 24K and Throughput for 128K) at 24K

states and 128K states respectively. Figure 6.1 shows NAPOLY execution time is

dominated by the time to flush input buffer and the time to flush the output buffer.

43

www.manaraa.com

Figure 6.1 Execution time makeup of NAPOLY.

Figure 6.2 plots the throughput of all NAPOLY overlays for 1 million input char-

acters and for a total NFA workload from 4K to 128K states. Overlays with higher

STE capacity perform better for larger NFAs, but for greater than 100,000 states the

performance differential is only 10%, indicating that the choice of overlay configura-

tion has an increasingly small impact for increasingly larger NFAs.

6.3 Mapping Results

To evaluate the suitability of the mapping heuristic for realistic workloads, we mapped

each of the NFA benchmarks in the ANMLZoo benchmark suite [11], which consists

of 12 benchmarks from various applications as shown in Table 6.4, where the first

column Benchmarks lists the benchmarks and second column #States shows total

number of states in each benchmark. The key goal of this work is to find the minimal

hardware fan-out under which we can map each benchmark.

Initially, we used the mapping heuristic to map ANMLZoo benchmarks. The

mapping heuristic used will run infinitely when it cannot find a valid mapping, so

it will abort execution when the derivative of the mapping score remains zero after

44

www.manaraa.com

Figure 6.2 NAPOLY Performance vs. NFA size.

several iterations of validate_edges, and try again with a larger hardware fan-out

value. After finding a valid mapping, a suitable NAPOLY overlay is chosen based

on the needed hardware fan-out. The overlay always has less STEs than states, but

enough STEs to hold the largest distinct graph in the benchmark (all ANMLZoo

benchmarks contain multiple distinct graphs).

Table 6.4 shows the mapping result for each of the ANMLZoo benchmarks. The

Minimum f Achieved column lists the minimum hardware fan-out required for

each benchmark based on our heuristic mapping algorithm. The Overlay Size

shows the largest target overlay that can support the needed fan-out. NAPOLY

re-configurations is computed d S
N
e, as shown in the fifth column. The column la-

45

www.manaraa.com

Table 6.4 NAPOLY Mapping Using Mapping Heuristic

Benchmarks
#

States
(S)

Min f
Achieved

Overlay
Size
(N)

#
Reconf.

Throughput
(MB/s)

Brill 26668 40 8K 4 20
Clam AV 49538 18 12K 5 13
Dot Star 96438 4 20K 5 12

ER 95136 62 4K 19 3
Fermi 40783 8 16K 2 24

Hamming 11346 21 12K 1 63
Levenshtein 2784 17 12K 1 63
Power En 40513 29 8K 5 16
Protomata 42061 48 4K 10 13
Random
Forest 75340 12 16K 5 15

Snort 69029 60 4K 17 5
SPM 100500 8 16K 5 10

beled Reconfiguration Time Throughput lists the effective throughput for each

benchmark, which includes the target overlay’s clock speed and reconfiguration time.

Table 6.5 shows the mapping result for each of the ANMLZoo benchmarks using

SAT solver. The Table is structured similar to Table 6.4. Comparing with mapping

heuristic, SAT solver achieved a significant improvement in hardware fan-out, target-

ing larger overlay and reducing the number of re-configurations in 75% of ANMLZoo

benchmarks, and Figure 6.3 shows the performance speed up for these benchmarks.

6.4 NFA Transformation Results

We applied NFA transformation technique (explained in previous Chapter) on Pro-

tomata, Snort and Power En benchmarks, which have less than 5% of its NFAs failing

to map with the hardware fan-out needed to migrate the benchmark into next larger

overlay.

46

www.manaraa.com

Table 6.5 NAPOLY Mapping Using SAT solver

Benchmarks
#

States
(S)

Min f
Achieved

Overlay
Size
(N)

#
Reconf.

Throughput
(MB/s)

Brill 26668 8 16K 2 36
Clam AV 49538 12 16K 3 16
Dot Star 96438 4 20K 5 12

ER 95136 41 8K 12 7
Fermi 40783 5 20K 2 31

Hamming 11346 14 12K 1 63
Levenshtein 2784 16 12K 1 63
Power En 40513 8 16K 3 25
Protomata 42061 42 8K 6 15
Random
Forest 75340 6 20K 4 16

Snort 69029 36 8K 9 9
SPM 100500 6 20K 5 13

Figure 6.3 Speedup achieved in 75% of Benchmarks at SAT solver vs. heuristic.

47

www.manaraa.com

Table 6.6 Snort Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

10/10 0 36 8K
8/8 1% 12 16K
6/6 3% 11 16K
4/4 4% 11 16K
2/2 4% 9 16K
1/1 40% 2 24K

Table 6.7 Protomata Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

24/24 0 42 8K
16/16 0.07% 11 16K
8/8 0.2% 11 16K
2/2 2% 9 16K
1/1 12415% 2 24K

Tables 6.7, 6.6, 6.8 show the state replications and the achieved hardware Fan-out

after NFA transformation for three benchmarks Protomata, Snort and Power En. The

first column represents the Fan-in/Fan-out limit applied on the failing sub-graphs

of each benchmark. The second column, State Replications, shows the number

of state replications achieved when fan-in/out limits applied. Third column shows

the Minimum Hardware Fan-out achieved to map the sub-graphs onto larger

overlays, and final column shows the Target Overlay. As shown in the three tables,

the number of state replications significantly increases when limiting Fan-in/Fan-out

to 1, while it lowers when moving the limits towards the maximum logical Fan-in/out

for each benchmark.

48

www.manaraa.com

Table 6.8 Power En Transformation Results

Logical
Fan-in/-out

Limit

State
Replications

Achieved
HW Fan-out

Target
Overlay

4/3 0 8 16K
2/2 0.3% 6 20K
1/1 10% 2 24K

Table 6.9 Performance Results

Benchmark NAPOLY
Throughput

Average
Active
States
(AS)

R
per
B

GPU
Throughp
(MB/s)

CPU
Throughp
(MB/s)

Speedup
vs

Max
(CPU,
GPU)

Brill 36 14 4 7 1 9
Clam AV 16 4 5 4 14 1.14
Dot Star 12 3 5 40 10 0.3

Entity Resolution 7 10 19 4 1 1.75
Fermi 31 3854 2 2 1 15.5

Hamming 63 240 1 18 10 3.5
Levenshtein 63 88 1 38 1 1.65
Power En 31 31 5 53 10 0.58
Protomata 24 19 6 5 1 4.8

Random Forest 16 968 5 2 0.5 8
Snort 15 98 17 14 0.4 1.07
SPM 14 6631 5 0.5 0.1 28

6.5 Performance Comparison

For each of the ANMLZoo benchmarks, Table 6.9 shows the performance of competing

CPU and GPU automata processing frameworks. The CPU implementation is Intel

Hyperscan [1] measured independently by the authors using a 3.1 GHz Intel i5-4440

CPU with 32 GB RAM. The GPU implementation is iNFAnt2 executed on an Nvidia

Titan Xp as reported in [11].

In order to understand the relationship between the NFA and its corresponding

performance on the CPU and GPU implementations, the table also lists runtime

data for each benchmark: the average number of active states (active set) and total

49

www.manaraa.com

Table 6.10 Repertoire of Achieved Configurations on Stratix10 GS

STEs Hardware
Fan-out

Output
En-
coders

Max Re-
porting
Cycles

Max
Report
rate
(GHz)

Fmax
(MHz)

Max
BW for
N%active =
0.25(GB/s)

4K 254 16 100% 4.64 290 8746
8K 126 32 50% 8 250 7510
12K 83 48 33% 12 250 7331
16K 62 64 25% 13.4 210 6208
20K 49 80 20% 15.2 190 5549
24K 40 96 17% 16.32 170 4863
28K 34 112 14% 16.8 150 4255
32K 30 128 12% 16.64 130 3719
36K 26 144 11% 15.84 110 3068
40K 23 160 10% 14.4 90 2467
44K 21 176 9% 12.32 70 1744
48K 19 192 8% 9.6 50 1072

number of reports as reported in [11]. NAPOLY performs best for larger benchmarks

with more active states and is faster than both the GPU and CPU NFA implemen-

tations in 10 of the 12 benchmarks, while the GPU implementation is faster in only

2 benchmarks and the CPU implementation has no winning benchmarks.

1
1
2 + 1

2 ×
1
2
≈ 1.33 (6.1)

6.6 Overlay Scalability

As shown in Equation 4.1, NAPOLY throughput depends on (1) the number of re-

configurations needed, which may be reduced by having a larger overlay with more

interconnect density, (2) the time to flush the input buffer, which depends on clock

speed, and (3) reconfiguration time, which depends on DRAM bandwidth. Table

6.10 shows NAPOLY capability when scaled up to an Intel Stratix 10 GS. However,

even if larger FPGA can offer roughly double of of overlay capacity, double of clock

50

www.manaraa.com

rate and double of DRAM bandwidth, the performance won’t probably be doubled

according to Equation 6.1.

51

www.manaraa.com

Chapter 7

Conclusion and Future work

In this dissertation we have presented a novel architecture for an automata processor

overlay and its associated software. NAPOLY is paramerterizable, allowing for trade-

offs in state capacity, interconnect density, and output buffer size. These tradeoffs

allow for offline generation of a repertoire of overlays that allow for the overlay to

be customized for specific types of NFAs. Once an overlay is deployed, the user can

rapidly program the NFA at runtime, supporting arbitrary large NFAs. Automata-

based benchmarks are mapped to NAPOLY processing elements based on SAT solver

mappable technique.

Our performance results included the time required to program the overlay from

DRAM and are competitive with the state-of-the-art CPU implementation from In-

tel and the state-of-the-art GPU implementation. Our performance results showed

that NAPOLY’s performance scales with on-chip memory capacity. In addition, we

evaluated NAPOLY’s scalability on larger FPGA, Stratix 10 GS.

7.1 Future Research Directions

There is two directions still needed to explore in this research in order to improve

NAPOLY’s performance. First is the number of unused hardware resources and how

can be reduced. Second is to the high latency of flushing the input and output buffers

and how can be eliminated.

52

www.manaraa.com

7.1.1 STE Reach versus Fan-out

The major limitation in NAPOLY implementation is the hardware fan-out, which

determines the number of neighbor STEs to which each STE can connect to, and

determines the maximum distance that each STE can reach. This number of wires

is limited by the chip hardware resources (gates), which consequently affects the

overlay size (or total STEs), and limits the performance. In this dissertation, we

assumed that STE “reach” is equivalent to STE “fan-out”. As shown in Table 7.1,

the actual number of STE outgoing and incoming wires that are actually utilized in

each benchmark, is less than 29% for both, which means that about 70% of the wires

are unused.

Table 7.1 Wire Utilization Achieved For ANMLZoo Benchmarks

Benchmark

Max
Logical
Fan-in/
Fan-out

Min
Hardware
Fan-in/
Fan-out

Average
Fan-in
degree

Average
Fan-out
degree

Fan-in
Wire
Utiliz

Fan-out
Wire
Utiliz

Brill 4/4 8/8 1.11 0.72 13.8% 9%
ClamAV 11/2 18/18 1.01 1.003 5.6% 5.6%
DotStar 2/2 4/4 1.00 0.48 25% 12%

Entity Resolution 28/5 41/41 1.89 1.15 4.6% 2.8%
Fermi 2/2 5/5 1.33 1.41 26.6% 28.2%

Hamming 4/2 14/14 1.69 1.69 12% 12%
Levenshtein 8/5 16/16 2.89 1.63 18% 10.2%
PowerEn 4/3 6/6 1.08 0.51 18% 8.5%
Protomata 3/106 9/9 1.02 0.49 11.3% 5.4%

Random Forest 2/2 6/6 1.05 0.5 17.5% 8.3%
Snort 19/19 9/9 1.22 0.6 13.5% 6.6%
SPM 3/2 6/6 2.1 1.05 35% 17.5%

One the other hand, based on our experimental results shown in the previous

chapter, such automata application benchmarks requires larger overlay in order to

reduce number of times required to reconfigure the chip and improve the performance.

However, this is limited by hardware fan-out. To overcome this bottleneck, we need

to re-design the STE to support less number of fan-out, but further reach. This goal

53

www.manaraa.com

can be achieved by allowing the STEs to share the wires and tri-state the connections.

By this way, each STE can have less number of outgoing and incoming wires and less

resource utilization, but it can reach far STE. Figure 7.1 shows an example of an

overlay having its STEs sharing the wires using the multiplexers. In the example, the

maximum fan-out is 2, one connecting to the self-loop and the other can connect to

either one of the four next STEs. As shown, STE0 reaches STE0 through wire #0

and STE0 reaches STE1, STE2, STE3, and STE4 through the multiplexer 4x1.

Figure 7.1 Suggested NAPOLY design

Sharing the wires costs a lot of wires, specially if the wires are implemented as a

one global shared bus. If the wires are implemented hierarchically as a group of local

shared wires, less number of wires can be needed, however programming its routing

becomes more problematic as compared to one global bus.

7.1.2 NAPOLY execution time

NAPOLY spends over half of its time flushing the input buffer into the STE array

and nearly half the time flushing the output buffer to DRAM. It is possible to per-

form these steps in parallel, if reports are written to DRAM immediately after being

generated from the STE array.

54

www.manaraa.com

The current design of NAPOLY is based on performing one operation at a time,

for example, flushing the input buffer while the rest of operations (flushing output

buffer, filling input buffer and filling the next-state table and gates) are stall. Since

flushing the input buffer and the output buffer have the major effect on NAPOLY

performance, overlapping the two operations can hide this latency. This can be

implemented by splitting the overlay into two halves. While the first half is flushing

the input buffer, the second half is flushing the output buffer. This can eliminate the

time of flushing the input buffer of NAPOLY performance, however at cost of more

reconfigurations can be required.

The time to flush the output buffer can also be reduced by adding FIFO in the re-

port region in order to allow outputting reports while flushing the output buffer. This

approach will help in eliminating the latency of output buffer flush, and potentially

requiring smaller output buffer.

55

www.manaraa.com

Bibliography
[1] K. Angstadt and et al. Mncart: An open-source, multi-architecture automata-

processing research and execution ecosystem. 2017.

[2] M. Becchi and P. Crowley. Efficient regular expression evaluation: theory to
practice. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, 2008.

[3] Michela Becchi and Crowley Patrick. Data structures, algorithms and architec-
tures for efficient regular expression evaluation. 2009.

[4] V. Betz and J. Rose. Vpr: a new packing, placement and routing tool for
fpga research. In Proceedings of the 1997 International Workshop on Field Pro-
grammable Logic and Applications, 1997.

[5] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. An efficient and scalable semiconductor architecture for parallel automata
processing. IEEE Transactions on Parallel and Distributed Systems, 25(12),
2014.

[6] A. Putnam et al. A reconfigurable fabric for accelerating large-scale datacenter
services. Computer Architecture, ACM/IEEE International Symposium on, 2014.

[7] Chunkun Bo et al. Automata processing in reconfigurable architectures: In-the-
cloud deployment, cross-platform evaluation, and fast symbol-only reconfigura-
tion. 2019.

[8] D. Guo et al. A scalable multithreaded l7-filter design for multi-core servers.
ANCS’08, 2008.

[9] I. Roy et al. Interval stabbing on the automata processor. Journal of Parallel
and Distributed Computing, 2018.

[10] J. Hauswald et al. Sirius: An open end-to-end voice and vision personal assistant
and its implications for future warehouse scale computers. 2015.

56

www.manaraa.com

[11] J. Wadden et al. Anmlzoo: a benchmark suite for exploring bottlenecks in
automata processing engines and architectures. In Proceedings of the 2016 IEEE
International Symposium on Workload Characterization (IISWC), 2016.

[12] J. Yu et al. Time-division multiplexing automata processor. 2019.

[13] K. Angstadt et al. Mncart: An open-source, multi-architecture automata-
processing research and execution ecosystem. 2018.

[14] K. Peng et al. Chain-based dfa deflation for fast and scalable regular expression
matching using tcam. 2011.

[15] K. Wang et al. Association rule mining with the micron automata processor. In
Proceedings of the IEEE 29th International Parallel and Distributed Processing
Symposium, 2015.

[16] M. Casias et al. Debugging support for pattern-matching languages and accel-
erators. ASPLOS, 2019.

[17] N. Cascarano et al. infant: Nfa pattern matching on gpgpu devices. ACM
SIGCOMM Computer Communication Review 40.5, 2010.

[18] Q. Wang et al. A dna motif search tool using the micron automata processor
and fpga. IEICE Transactions on Information and Systems, 2017.

[19] R. Moussalli et al. A study on parallelizing xml path filtering using accelerators.
2014.

[20] R. Nishtala et al. Scaling memcache at facebook. 2013.

[21] X. Chen et al. Picking pesky parameters: Optimizing regular expression match-
ing in practice. IEEE Transactions on Parallel and Distributed Systems, 27(5),
2016.

[22] Y. Fang et al. Fast support for unstructured data processing: the unified au-
tomata processor. In Proceedings of MICRO-48, 2015.

[23] Y. Yang et al. Compact architecture for high-throughput regular expression
matching on fpga. In Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, 2008.

57

www.manaraa.com

[24] G. Li F. Seide and D. Yu. Conversational speech transcription using context-
dependent deep neural networks. 2011.

[25] P. Flicek and E. Birney. Sense from sequence reads: methods for alignment and
assembly. Nature methods, 2009.

[26] A. Harris. Distributed caching via memcached. 2010.

[27] Peter Linz. An introduction to formal languages and automata. 2006.

[28] M. Nourian, X. Wang, W. Feng X. Yu, and M. Becchi. Demistifying automata
processing: Gpus, fpgas or micron’s ap? In Proceedings of the International
Conference on Supercomputing, 2017.

[29] I. Roy and S. Aluru. Finding motifs in biological sequences using the micron
automata processor. In Proceedings of the 28th IEEE International Parallel and
Distributed Processing Symposium, 2014.

[30] R. Sidhu and V. K. Prasanna. Fast regular expression matching using fpgas. In
Proceedings of the IEEE Symposium on Field-Programmable Custom Computing
Machines, 2001.

[31] Arun Subramaniyan and Reetuparna Das. Parallel automata processor. 2017.

[32] Louis Woods Teubner, Jens and Chongling Nie. Skeleton automata for fpgas:
reconfiguring without reconstructing. 2012.

[33] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, and G. Robins.
Nondeterministic finite automata in hardware – the case of the levenshtein au-
tomaton. In Proceedings of the 5th International Workshop on Architectures and
Systems for Big Data in conjunction with the 42nd International Symposium on
Computer Architecture, 2015.

[34] T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, and G. Robins.
Nondeterministic finite automata in hardware âĂŞ the case of the levenshtein
automaton. In Proceedings of the International Workshop on Architectures and
Systems for Big Data (ASBD) in conjunction with the 42nd International Sym-
posium on Computer Architecture (ISCA 2015), 2015.

[35] J. Wadden, K. Angstadt, and K. Skadron. Characterizing and mitigating output
reporting bottlenecks in spatial automata processing architectures. In Proceed-

58

www.manaraa.com

ings of the 24th IEEE International Symposium on High-Performance Computer
Architecture (HPCA’18), 2018.

[36] J. Wadden, K. Samira Khan, and K. Skadron. Automata-to-routing: An open-
source toolchain for design-space exploration of spatial automata processing ar-
chitectures. In Proceedings of the IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines, 2017.

[37] J. Wadden and K. Shadron. Vasim: An open virtual automata simulator for
automata processing application and architecture research. Technical Report
CS2016-03, University of Virginia, 2016, 2016.

[38] K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy, J. Wad-
den, M. Stan, and K. Skadron. An overview of micron’s automata processor.
In Proceedings of the 11th IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, 2017.

[39] K. Wang and K. Skadron M. Stan. Association rule mining with the micron
automata processor. In Proceedings of the 29th IEEE International Parallel and
Distributed Processing Symposium, 2015.

[40] Y. Yang and V. Prasanna. High-performance and compact architecture for reg-
ular expression matching on fpga. IEEE Transactions on Computers, 61(7),
2012.

[41] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-
efficient regular expression matching for deep packet inspection. In Proceedings
of the 2006 ACM/IEEE symposium on Architecture for networking and commu-
nications systems, 2006.

[42] K. Zhou, J.J. Fox, K. Wang, D.E. Brown, and K. Skadron. Brill tagging on
the micron automata processor. In Proceedings of the 9th IEEE International
Conference on Semantic Computing (ICSC), 2015.

[43] K. Zhou, J. Wadden, J.J. Fox, K. Wang, D.E. Brown, and K. Skadron. Regular
expression acceleration on the micron automata processor: Brill tagging as a
case study. In Proceedings of the IEEE International Conference on Big Data
(Big Data 2015), 2015.

59

www.manaraa.com

Appendix A

Mapping Heuristic

A.1 validate_edges

validate_edges contains the top-level do-while loop, which iterates until there are

no mapping violations. On each iteration, it validates the placement of each pair of

states associated with each NFA edge.

For every mapping violation, validate_edges will evaluate the difference in score

given by each of the 2×(f−1) potential resolutions, where f is the hardware fan-out.

In other words, for every edge comprised of predecessor state p and successor state s,

the routine can fix the violation by either remapping s within the range of reachable

STEs to p or remapping p within range of reachable STEs to s, where “within range”

refers to any STE in the f − 1 positions from bf−1
2 c locations less and bf

2c greater

than the target STE location. validate_edges eventually chooses one move that

results in most positive or least negative impact on the score.

A.2 check_move

The check_move A.1 routine evaluates the effect of re-mapping a state in terms of

its impact on the mapping score. Re-mapping a state from its original location in

STE n to new location in STE m where n < m (i.e. moving a state to a larger STE

index) will affect any edge whose predecessor or successor state is mapped to STE

l : n ≤ l ≤ m, or where m < n (i.e. moving a state to a lower STE index) will affect

any edge whose predecessor or successor is mapped to STE l : m ≤ l ≤ n.

60

www.manaraa.com

A.3 Move_STE

move_STE performs a remapping operation on the graph by reassigning the state

in STE index from to STE index to. Moving a state in this way causes the states

mapped in the range of STEs between from and to to be shifted by one in order to

fill the gap left by the state being moved.

This operation is depicted in Fig. A.1. In this example, there is an edge connecting

states “fifth” and “second” that are mapped to STEs n and m, respectively. Since

n > m, the edge is oriented in the upward direction in the figure, in which higher-

numbered STEs are lower as compared to lower-numbered STEs. The left side shows

the original mapping state. Moving the state “fifth” from STE n to STE m causes

all the states between them to shift down, as shown on the right side. This affects

the mapping score contribution of any edges having successors or predecessors in the

range of n to m.

61

www.manaraa.com

Function validate_edges():
Input: NFA edges

Output: NFA edges

do

for edge p→ s in current STE assignment do
// check for a mapping violation

if
(
(p− s) < −f−1

2

)
||
(
(s− p) > f

2

)
then

max_differential_score = - INT_MAX // evaluate each potential

solution to the violation...

for k = −bf−1
2 c . . . b

f
2c do

to = s+ k

// ... by moving the predecessor closer to the successor

max_differential_score = check_move(from, to, max_differential_score,

best_from, best_to)
end

for k = −bf−1
2 c . . . b

f
2c do

from = s to = p+ k

// ... by moving the successor closer to the predecessor

max_differential_score = check_move(from, to, max_differential_score,

best_from, best_to)
end

move_ste(best_from,best_to)
end

end

// avoid getting suck in a local minema

if # of violations unchanged for 10 iterations then
make 10000 random moves

end

while fan-out constraint violations exist;

62

www.manaraa.com

Function check_move():
Input: from, to

Output: max_differential_score, best_to, best_from

// score for edges affected by the remapping

score = calculate_score(from, to);

// perform the remapping

move_SE(from, to)

// re-calculate score

differential_score = score - calculate_score(from, to)

// revert mapping to previous state

move_SE(from, to); // undo move

// check if the new score is better than the best found so far

if differential_score > max_differential_score then
max_differential_score = differential_score

best_to = to

best_from = from
end

63

www.manaraa.com

Function move_STE():
Input: from, to

Output: NFA edges

if from < to then

for edge i→ j do

if j == from then
replace i→ j with i→ to

else if j > from && j ≤ to then
replace i→ j with i→ j − 1

end

end

else

for edge i→ j do

if j == from then
replace i→ j with i→ to

else if j > to && j < from then
replace i→ j with i→ j + 1

end

end

end
Function calculate_score():

Input: from, to

sum = 0

for edge i→ j such that (from ≤ i ≤ to || to ≤ i ≤ from) || (from ≤ j ≤ to

|| to ≤ j ≤ from) do
sum = sum + |i− j|

end

return sum

64

www.manaraa.com

Figure A.1 Remapping STEs. Edge between state “fifth” and “second” is reassigned
from STEs n and m, where n > m, to m and m+ 1 (after an operation “move STE n
to m”). In this case, a movement from a higher-numbered STE to a lower-numbered
STE causes all other STEs assignments between the two values to shift up, requiring
an update to all other edges involving these STEs.

A.4 calculate_score

calculate_score accumulates the “distance” of all edges having successors or pre-

decessors mapped to any of the STEs in a given STE range, where the distance is

defined as the absolute difference in STE numbers corresponding to the states that

comprise the edge. The mapping heuristic’s objective is to minimize this score by

mapping connected STEs into localized regions in the STE array.

65

	An Overlay Architecture for Pattern Matching
	Recommended Citation

	tmp.1594573782.pdf.rz1pc

